
0.1 stepped pressure equilibrium code : readme

1. The stepped pressure equilibrium code.

2. The stepped pressure equilibrium code [1] seeks numerical solutions to macroscopic force balance between the pressure
gradient and the Lorentz force in arbitrary, non-axisymmetric toroidal configurations, with fields of arbitrary topology.
Generally, non-axisymmetric toroidal magnetic fields are non-integrable, so the magnetic field is not guaranteed to be
tangential to a set of continually nested magnetic surfaces.

3. Equilibrium solutions are cast as extrema of a constrained energy functional.

4. Consider a plasma region comprised of a set of NV ≡ Nvol nested annular regions, which are separated by a discrete set
of toroidal interfaces, Il. We insist that the fields are tangential to the interfaces. In each volume, Vl, bounded by the
Il−1 and Il interfaces, the plasma energy, Ul, the global-helicity, Hl, and the mass, Ml, are given by the integrals:

Ul =

∫

Vl

(

p

γ − 1
+
B2

2µ0

)

dv, (1)

Hl =

∫

Vl

A · B dv, (2)

Ml =

∫

Vl

p1/γ dv, (3)

where B = ∇× A. The pressure, p, is a scalar function of position.

5. The equilibrium states that we seek [2] minimize the total plasma energy, subject to the constraints of conserved helicity
and conserved mass/entropy in each annular region. We allow arbitrary variations in the pressure in each annulus, δp,
the magnetic field in each annulus, δA, and the geometry of the interfaces, ξ, except that we assume the magnetic field
remains tangential to the interfaces which we consider to act as ‘ideal barriers’.

The free-energy functional we seek to extremize is

F =

NV
∑

l=1

(Ul − µlHl/2 − νlMl) , (4)

where µl and νl are Lagrange multipliers (and are constant over each volume, Vl).

6. The first variation in the plasma energy, allowing variations in the pressure, δp, the field, δA, and interface geometry, ξ,
is given

δUl =

∫

Vl

(

δp

γ − 1
+

B · ∇ × δA

µ0

)

dv +

∫

∂Vl

(

p

γ − 1
+
B2

2µ0

)

(n · ξ) ds, (5)

Using the identity ∇ · (A × B) = B · ∇ × A − A · ∇ × B and integrating by parts we obtain

δUl =

∫

Vl

(

δp

γ − 1
+
δA · ∇ × B

µ0

)

dv +

∫

∂Vl

(

p

γ − 1
+
B2

2µ0

)

(n · ξ) ds+

∫

∂Vl

n · δA × B

µ0

ds. (6)

The interfaces are assumed to be ideal, so in the surface integrals we make use of Faraday’s law ∂tB = ∇× E and the
ideal Ohm’s law E + v × B = 0 to obtain the expression δA = ξ × B. The variation in the plasma energy becomes

δUl =

∫

Vl

(

δp

γ − 1
+
δA · ∇ × B

µ0

)

dv +

∫

∂Vl

(

p

γ − 1
−
B2

2µ0

)

(n · ξ) ds. (7)

A similar analysis shows that the first variation in the helicity is

δHl = 2

∫

Vl

B · δA dv. (8)

The variation in the plasma mass is

δMl =

∫

Vl

p1/γ

γp
δp dv +

∫

∂Vl

p1/γ(n · ξ) ds.
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Combining these expressions, the first variation in the free-energy functional is

δFl =

∫

Vl

(

1

γ − 1
−
νlp

1/γ

γp

)

δp dv

+

∫

Vl

(

∇× B

µ0

− µlB

)

· δA dv (9)

+

∫

∂Vl

(

p

γ − 1
− νlp

1/γ
−
B2

2µ0

)

(n · ξ) ds

The Euler-Lagrange equation for variations in the pressure is νlp
1/γ = γp/(γ − 1). For constant νl this indicates that

p = const. in each volume.

The Euler-Lagrange equation for variations in the variations in the vector-potential is the Beltrami equation, Eq.(10).

∇× B = µlµ0B. (10)

The Euler-Lagrange equation for variations in the interface geometry, using νlp
1/γ = γp/(γ − 1), is

[[

p+B2/2µ0

]]

= 0. (11)

The pressure may have discrete jumps at the interfaces, and so globally non-trivial pressure profiles may be constructed,
provided the total pressure, p+B2/2µ0, is continuous.

7. Only the variations in the geometry normal to the interfaces, (n · ξ), are relevant: tangential variations do not alter the
energy functional. To constrain the tangential degrees of freedom, additional constraints derived from minimizing the
spectral width are included.

8. An auxiliary analysis [3] indicates that, in order to support non-trivial pressure, the interfaces must have strongly irrational
transform.

0.1.1 numerical descretization

1. A set of NV nested, toroidal surfaces is given on input. For expedience, we restrict attention to stellarator symmetric
devices [4] so that the interfaces may be described

Rl(θ, ζ) =
∑

j Rl,j cos(mjθ − njζ),

Zl(θ, ζ) =
∑

j Zl,j sin(mjθ − njζ).
(12)

2. The coordinate functions R(s, θ, ζ) and Z(s, θ, ζ) take the form

R(s, θ, ζ) =
∑

j Rj(s) cos(mjθ − njζ),

Z(s, θ, ζ) =
∑

j Zj(s) sin(mjθ − njζ),
(13)

where the functions Rj(s), Zj(s) are constructed by piecewise-cubic interpolation of the Rl,j and Zl,j .

3. In the l-th annulus, bounded by the (l − 1)-th and l-th interfaces, a general covariant representation of the magnetic
vector-potential is written

Āl = Ās,l∇s+ Āθ,l∇θ + Āζ,l∇ζ. (14)

To this add ∇gl(s, θ, ζ), where gl satisfies

∂sgl(s, θ, ζ) = −Ās,l(s, θ, ζ),
∂θgl(sl−1, θ, ζ) = −Āθ,l(sl−1, θ, ζ) + ψt,l−1,
∂ζgl(sl−1, 0, ζ) = −Āζ,l(sl−1, 0, ζ) + ψp,l−1,

(15)

for arbitrary constants ψt,l−1, ψp,l−1, which are the toroidal and poloidal-fluxes on the interior of surface l − 1. Then
Al = Āl + ∇gl is given by Al = Aθ,l∇θ +Aζ,l∇ζ with

Aθ,l(sl−1, θ, ζ) = ψt,l−1,
Aζ,l(sl−1, 0, ζ) = ψp,l−1.

(16)

This specifies the gauge.
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4. For stellarator symmetric equilibria, Aθ,l and Aζ,l may be represented by cosine series

Aθ,l(s, θ, ζ) =
∑

j Aθ,l,j(s) cos(mjθ − njζ),

Aζ,l(s, θ, ζ) =
∑

j Aζ,l,j(s) cos(mjθ − njζ),
(17)

where Aθ,l,j(s) and Aζ,l,j(s) are represented using finite-elements.

0.1.2 compilation

1. The source is kept under CVS: >cvs -d /u/shudson/cvs_Spec/ checkout Spec

2. Compilation is provided by a Makefile: >make xspec. Try >make help for compilation options.

(a) The compilation flags are given by FLAGS. These may be over-ruled by command line arguments.

(b) Compilation flags must be set that convert single precision to double precision, e.g. make FLAGS="--dbl".

(c) The NAG library is used and must be correctly linked.
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